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Numerical Stability in Evaluating Continued Fractions* 

By William B. Jones and W. J. Thron 

Abstract. A careful analysis of the backward recurrence algorithm for evaluating approxi- 
mants of continued fractions provides rigorous bounds for the accumulated relative error due 
to rounding. Such errors are produced by machine operations which carry only a fixed number 
v of significant digits in the computations. The resulting error bounds are expressed in terms 
of the machine parameter v. The derivation uses a basic assumption about continued fractions, 
which has played a fundamental role in developing convergence criteria. Hence, its appear- 
ance in the present context is quite natural. For illustration, the new error bounds are applied 
to two large classes of continued fractions, which subsume many expansions of special 
functions of physics and engineering, including those represented by Stieltjes fractions. In 
many cases, the results insure numerical stability of the backward recurrence algorithm. 

1. Introduction. The analytic theory of continued fractions provides a useful 
means for representation and continuation of special functions of mathematical 
physics [1], [2], [10]. Many applications of continued fractions and the closely 
related Pade approximants have recently been made in various areas of numerical 
analysis and of theoretical physics, chemistry and engineering [4], [5], [7]. Thus, it is 
important to establish a sound understanding of the basic computational problems 
associated with continued fractions. The present paper is written to help fulfill that 
aim. 

A number of procedures for calculating the nth approximant fn of a continued 
fraction 

a, a2 a3 

(1.1) bi + b2 + b3 + 

are found in the literature. For example, the "forward recurrence algorithm" (F-R 
algorithm) consists in applying the well-known second-order linear difference 
equations 

(1.2a) Ak= bkAkl + akAk-2, k = n, 

Bk= bkBk-1 + akBk-2, 

and initial conditions 

(1.2b) AL1=L, AO= 0, B-1 = 0, Bo= 

to give f, = A nBn . 
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The so-called "backward recurrence algorithm" (B-R algorithm) consists of the 
following: Set 

(1.3a) Gn= 0 

and compute successively from "tail to head" 

(1.3b) Gkn = akl(bk + Gk")l) k = n, n -1 ..,1 

to obtain fn = Gl(). Other algorithms have been based on the well-known series 
formula 

k~l(Bk~k~l~k (_)k+lH a1 
An n {Ak Ak-1 n 

z ( - l) IIJ= 
j 

B 
fn Bn ki ik k- / ~ BkBk- 

(see, for example, [2], [3]). We omit a detailed description of these algorithms since 
they are not dealt with further in this paper. 

The computation of a single approximant fn by the F-R algorithm requires 
4n + 1 operations of multiplication or division, whereas only n such operations are 
used by the B-R algorithm. Thus, B-R is computationally more efficient if only 
one approximant is required. On the other hand, if one wishes to obtain n successive 
approximants f1, - - -, fn, the F-R algorithm is more efficient since it requires only 
5n operations of multiplication or division compared to in(n + 1) such operations 
for the B-R algorithm. This difference is due to the fact that the F-R algorithm 
has a carry-over of results from one approximant to the next which is not enjoyed 
by the B-R algorithm. 

From the viewpoint of numerical stability, however, the F-R algorithm has 
inherent problems which the B-R algorithm does not appear to possess. One 
troublesome factor is that, although the sequence (fn} may converge to a finite limit, 
An and Bn may both tend to infinity or to zero, thus making it necessary to re-scale 
from time to time to prevent machine overflow or underflow. A more serious 
difficulty of the F-R algorithm is the tendency of rounding error to accumulate in 
successive application of the three-term recurrence relations (1.2). Some of the 
dangers of numerical instability associated with three-term recurrence relations 
have been discussed by Gautschi [3]. Blanch [2] has given an analysis of rounding 
errors which seems to indicate that the B-R algorithm is numerically more stable 
than the F-R algorithm. An illustration of this phenomenon is given by the numerical 
example in Section 2. Computations made for the convergent continued fraction 

(1.4) _ 5 = -.25 -.25 -.25 

show that rounding error accumulates significantly from the F-R algorithm but not from 
the B-R algorithm. 

The primary purpose of the present paper is to give explicit and precise upper 
bounds for the rounding error produced by the B-R algorithm. Our main results are 
contained in Theorems 3.1 and 4.3. The first of these is a general result which makes 
no special assumptions about the continued fraction. It evolved out of work 
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included in [2]. (The problem has also been attacked in [8].) Theorem 4.3 provides 
methods for estimating a basic quantity gk(n) needed to apply Theorem 3.1. The main 
assumption about continued fractions in Theorem 4.3 is the existence of a sequence 
of subsets {K I} of the extended complex plane such that, for all n, 

(l.5a) 0 E X, 

and 

(l.5b) an/(bn + n) C E-l 

(see the discussion at the end of this section for the meaning of (1.5b)). Property (1.5) 
has played a fundamental role in developing much of the known convergence 
theory of continued fractions ([6], [9]). Hence its occurrence here is quite natural. 
Some examples of applications of Theorems 3.1 and 4.3 are included in Section 5. 
Two large classes of continued fractions are considered: (a) Stieltjes fractions 
(subsection 5.1) and (b) a class which subsumes all convergent Stieltjes fractions and 
a larger subclass of the positive-definite continued fractions (subsection 5.2). 

Before proceeding with the main body of the paper, we state for later use some 
definitions and notation employed. A continued fraction is an ordered triple of 
sequences [{an}, {bn}, {fjn] such that, for each n = 1, 2, 3, . . ., an and bn are complex 
numbers (an # 0) andfn is defined as follows: Set 

(1.6a) sn an(bn + n= 1, 2, ... 

and 

(1.6b) Si( ) = si(D); S (D) = Sn1 (Sn(G)) n = 2, 3, 

Then 

fn = Sn (0), n = 1, 2,. 

The numbers an, bn are called the elements and fn the nth approximant of the 
continued fraction. A continued fraction is said to converge if its sequence of 
approximants converges. When convergent, a continued fraction has as its value 
lim fn. For convenience, other symbols are sometimes used to denote the continued 
fraction [tan}, tbn}, fM}] such as K(an/bn) and (1.1). 

If g is a function and A is a subset of the extended complex plane, we mean by 
g(A) the set (w: w = g(z), z E A). By d(z, A), we mean the distance from point z to 
set A. 

2. A Numerical Example. To illustrate numerical stability of the B-R algo- 
rithm and instability of the F-R algorithm, a numerical example is described in 
this section. Although such stability in the B-R algorithm cannot (at this point) 
be guaranteed for all continued fractions, the following sections show that it will 
occur in many cases. The continued fraction employed in the present example is 
(1.4). Values of the nth approximant fj, n = 1, ..., 15, correctly rounded in the 
fifth decimal place, are given in Table 1. Also given are approximations to fn 
obtained from the F-R algorithm (fI*) and from the B-R algorithm (fi), using 
floating-point arithmetic with 5-digit mantissas. It can be seen that the accumulative 
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rounding error .f, - Of* (F-R algorithm) grows steadily as n increases, starting at 
n = 6. At n 7, f,n* is correctly rounded only in the third decimal place. On the 
other hand, fn obtained by the B-R algorithm is correctly rounded to 5 decimal 
places for n = 1, . . ., 15, except for n = 11, wherefII is off by one unit in the fifth 
decimal place. Since the later values of fA (n > 1 1) are correctly rounded in the fifth 
place, the B-R algorithm appears to be self-correcting, at least in this example. 

Further calculations of fn, fn* and fn, for n = 1, 2,... .,40, showed that fn - f,* does 
not continue to increase indefinitely. A maximum error of .00031 is reached at 
n = 22. For n > 22, fn - fn* decreases to the value .00014 at n = 40. In the case of 
the B-R algorithm, fn remains correctly rounded in the fifth decimal place for 
1 _ n _ 40, n # 11. This example is considered again in subsection 5.2. Using 
Theorems 3.1 and 4.3, we obtain rigorous bounds for the relative rounding error 

If n - I/Ifn , which are consistent with those found numerically in the present 
example. 

. _ _ 

n f f f -f f f -f 
n n n n n n n 

1 - .25000 - .25000 .00000 - .25000 .00000 

2 _ .33333 - .33333 .00000 - .33333 .00000 

3 _ .37500 - .37500 .00000 - .37500 .00000 

4 _ .40000 - .40000 .00000 - .40000 .00000 

5 - .41667 - .41667 .00000 - .41667 .00000 

6 - .42857 - .42859 .00002 - .42857 .00000 

7 _ .43750 - .43757 .00007 - .43750 .00000 

8 - .44444 - .44452 .00008 - .44444 .00000 

9 - .45000 - .45010 .00010 - .45000 .00000 

10 - .45455 - .45467 .00012 - .45455 .00000 

11 - .45833 _. 45849 .00016 - .45844 .00001 

12 - .46154 - .46173 .00019 - .46154 .00000 

13 - .46429 _ .46449 .00020 - .46429 .00000 

14 - .46667 - .46690 .00023 - .46667 .00000 

15 - .46875 - .46900 .00025 - .46875 .00000 

TABLE 1. Computation of Approximants for the Convergent Continued Fraction 

K(-.25/1) _ -.5. 
fn equals the nth approximant correctly rounded in the fifth decimal place. 
fn* equals the approximation to fn by the F-R algorithm. 
fn equals the approximation to fn by the B-R algorithm. 
Both fn* and fn are- obtained with floating-point arithmetic using 5-digit 

mantissas. 
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3. Estimates of Relative Rounding Error. In this section, we establish general 
estimates of relative rounding error produced by the B-R algorithm in calculating 
an nth approximant. The following notation is used: For each k = 1, ..., n, let a/k 
and bk denote rounded values of the elements ak and bk, respectively, of a given 
continued fraction (1.1). Let a/k and /k denote the relative error in a/k and b/k, 
respectively, so that 

(3.1) 
ak 

= a/(l ? a/c), b/ = bk(l ? /c) 

Similarly, let 412) denote the relative error in d (n), the approximation to Gk obtained 
from (1.3) using "machine numbers" a/ and bk and machine operations which carry 
only a fixed number of significant digits in the computations. Thus 

(3.2a) Okn) - Gn)(1 + ? (n) k = 1, . . ., n, 

and 

(3.2b) (n)= G (n)= Ecn)I = 0. 

Further, let ykn) denote the relative error produced in the computation of O (n) from 
ak/, bk and G_,n( so that 

(3.3) a) = d/(1 + A 
)/(bk 

? 
G/c)l), k = 1, . .., n. 

Combining (3.2) and (3.3) with 

(3.4) g() G = Gnl/(bk + Gk ln), k= 1,...,n, 

one easily obtains the relation 

(n) (1 + ak) (1 + Yk 
- 1 k 1 ? /k ? gkn)(k) - /3,) n 

or 

(n a ?k1k + ?kcgy (ck -3c , k = 1, .n. ., n. 

Our interest is in estimating the number 4(n) and, particularly, e(n) the relative error 
in the machine approximation fn = (n). Such estimates are provided by the 
following: 

THEOREM 3.1. For each k = 1, ...,n, let E4n) satisfy (3.5), with gn(n) = (n)= 0. 
Further, let nonnegative numbers a, /3, y, i and X be chosen such that, for k = 1, ... 

n, 

(3.6a) a ? a / k /3, o ) | -< _y, gfn) 5 m 

where 
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a = 0 or al, 

(3.6b) 38 = 0 or /3'l, 

-y 1, 'q> ?S 

a + P + y _ 2. 

Then 

n-k 

(3.7) (,)() I + a + ? + Y + ? i) Ej, 
1=0 

provided that 

(3.8a) 0 _ co < 1/16(a +? / + y)2, 

and 

(3.8b) 0 'o < (2E1 +?? + /3 + q(1 + a + A + 7 + ?/3) ?yj 

Remarks. (1) Typically, X will equal (1)10'-", where v is the number of significant 
decimal digits carried in the (machine) computation. 

Then, for continued fractions of the form K(an/bn), one has a = /3 = 1 and 
y = 2 so that (3.7) gives 

n-i 

(3.9) 1 ?E(n) I (5 + a)@ E q - 
j=0 

If q can be chosen such that i _ 1, then (3.7) gives 

(3.10) {e(") I 6nw, 

implying that, at worst, the rounding error can grow fairly slowly. Moreover, if one 
can choose q such that 0 < q < 1, then (3.7) gives 

Icn)l < 6o/(l - q)9 

insuring numerical stability of the B-R algorithm. It will be shown (subsection 
5.1) that this is indeed the case for a great many continued fraction expansions. 

(2) Slightly smaller error bounds can be obtained in certain special cases. For 
continued fractions of the form K(an/l), we have bk = 1, so that we may choose 
B = 0 and a = y = 1; whence (3.7) gives 

n-1 

(3. 11) 1,Il | 3co E 1J . 
j=0 

Similarly, for continued fractions of the form K(l/bn), we have ak= 1 so that 
a = 0, /3 = 1 and y = 2; thus, (3.7) gives 

n-1 

(3.12) Ic((n) I (4 + q )'o E -qj. 
j=0 
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Hence, computationally, the form K(an/l) appears to be somewhat preferable. 
(3) The key obstacle in applying Theorem 3.1 is the determination of good 

estimates of the quantities gk(n). Methods for obtaining such estimates are given in 
Section 4 and illustrated in Section 5. 

Proof of Theorem 3.1. Set 
n-k 

(3.13) Ck(n) = 
(I + a + Pl + + l7)E 7j, k = ,..,n. 

j=O 

The proof of the theorem then consists in showing that 

(3.14) I,(n) I < k(n), k = 1, . . .Lfl. 

It is convenient to define 

(3. 1 5) h(n) =|+ fl-q + q Ck(n) , k = 1 , . .., n. 

Since, for all 2 _ k _ n, we have Con) C2(n), it follows from (3.8b) that 

(3.16) 2co[h(n)]2 ? 1, k = 2, 3, ..., n. 

Next, note that, for x ' 0, 

(3.17) 1/(1 - cox) 1 + cox + 2X2x2 

is valid, provided 2wx ? 1. This can be seen from the identity 

(1 - cox)(1 + ox + 2X02x2) = 1 + o2x2(1 - 2ox). 

The proof of the theorem consists of a backward induction on k, starting with 

k = n. We have from (3.5) and gn(n) = 0 that 

n(n) = (1 + an)(1 + yn())/(1 - /n) 1. 

Since, by (3.8a), /3w < 1, we then have 

1Ens) I c o(a + 1P + -y + a/3,o)/(1 - /3w). 

Agai -, oy (3.8a), 2,/3 < 1; hence, by (3.17), 

| n)| c (a + /3 + -y + a/3w) (1 + /3w + 2/32o2) 

= W(a + / + y) + w2(a(/3 + /2 + y2 + a(y) 

+ w3(a/y + 2a/32 + 2/3 + 232.y) + w04(2a/32.y) 

= + 2 + 3 + Ad, 

where = w(a + /3 + -y). It follows that 

(3.18) 1(n$) I w(a + /3 + y + 1) 

provided D + t2 + t3 + i" = 4 + w. But this is implied by (3.8a) and the hypothesis 
a + /8 + y ' 2. It follows from (3.18) that (3.7) is satisfied with k = n. 

Now we assume that 
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(3.19) k | - WCk? + 

for some value of k such that 1 k _ n - 1. Then, from (3.5), one easily obtains 

II<a + 'y + a'yw + h+ (3.20) - 
C 

(h) 

since (3.8b) insures that wh1n) 1. But since (3.8b) also implies that 2whgn)1 _ 1, it 
follows from (3.17) and (3.20) that 

|,(kn)ll, (a + y + aywo + hn) 1)(1 + whk n)1 + 212 [hn+ 1 ]2) 

(a + y + h(n) 1) + c[ay + (a + /3)hk1 + (h (n) 1] 

+ X[aoyhk+ + 2(a + y) (hok) + 2(hk1)3J + w3[2a-y(h( ))]. 

Using (3.16), we then obtain 

(3.21a) Ic(n) I /Co C a + .y + hkn) I+ A(n) 

where 

32 k ? 1/2+ )2(a+ + /2 +(a + y + ay)o + 1 ay32 + ayo2 
(3.21b) 

I + o1/2 + (a y)WI12 + (a +,y)2(CW + 13/2 + C02). 

It can be shown that \(n) 1. In fact, it follows from (3.8a) and the hypothesis 
(a + /3 + y) _ 2 that X < 2-6, so that xl/2 c 2-3. Moreover, (3.8a) implies that 
(a + y <o1/2 ? 22 (a + y)%o c 2-, (a + y)2C,3/2 c 26 and (a + y)%o2 _ 28. 

Hence, by (3.21a), 

I E(n) In-k k 1 + a + y + h)1 = (1 + a + + 'y + +q) 7 = Ck. 
(.0 j=O 

4. Methods for Estimating gk4n). Application of Theorem 3.1 requires that 
estimates be found for the quantities gkn) defined by (1.3) and (3.4). Methods for 
obtaining such estimates are described in this section (Theorem 4.3). At the outset, 
we prove (Theorem 4.1) that gkn) is invariant under equivalence transformations of 
continued fractions. This significant property shows that there is no need to search 
for an optimal form of a continued fraction from the point of view of minimizing 
estimates of gkfn). 

THEOREM 4.1. Let K(an/bn) and K(a*/b*) be equivalent continuedfractions, so that 
there exists a sequence of nonzero constants ftr} satisfying, for n = 1, 2, 

(4.1) an = rnrn1a* (ro = 1), 

bn = rn bln 

Forn = 1, 2, ..., andk = 1, .. ., n, let 

(4.2) gk n) = G)l/(bk + G 1) and gAf) = G / l(bZ + G 
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where 

-+ 0= G = ak/(bk + G 

(4.3)Gnn*n) (4.3) = 0, G = aZ/(bZ + Gkn) 

then 

(4.4) G(n) = rk lGk ,)* k = 1, ..., n, n = 1, 2, 

and 

(4.5) n)= g(n)*, k = 1, ..., n, n = 1, 2. 

Proof. First, we prove (4.4) for fixed n by a backward induction on k, starting 
with k = n. Using (4.1), we obtain 

= an/bn = rnn-lan*/rnb = * Gn_ n) . 

Now we assume that, for some k such that 0 < k < n - 1, Gk,+ = rkGk.Then, 
again using (4.1) we obtain 

=n ak 
- 

rk rk- ak 
* =rk )k Gk ) 1)= b n*=rk-l Gk bk + G I rk bk + rk G (n 

as asserted by (4.4). The proof of (4.5) follows immediately from (4.1), (4.2) and 
(4.4). 

It was mentioned in the introduction that many of the known classes of 
convergent continued fractions satisfy properties of the general form 

(4.6) Sn (J) C Vn- 1, n = 1, 2, .... 

where Sn(t) = an/(bn + t) and {J<} is a sequence of subsets of the extended plane. 
It will now be seen that (4.6) also plays a basic role in obtaining estimates of gkn). 

We begin with the following: 
LEMMA 4.2. Let 

(4.7) jana=an (4 7) fn = ~~~~bi + b2 + ***+ bn 

be given and let VI, ..., k be subsets of the extended complex plane such that 

(4.8) 0E K 

and 

(4.9) Sk(Jk) = ak/(bk + Uk) K -1, k = 2, ..., n. 

If Gk(n) is defined by (1.3), then 

(4.10) Ghc Ee -, k 2, 3, . . ., n, n + 

and hence6 
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(4.11) Ibk + G(n)1 ?i> d(-bk, J), k = 1, .. ., n. 

Proof. The proof of (4.10) is by a backward induction on k, starting with 
k = n + 1. By use of (4.8) and (1.3), we obtain Gn(+n) = 0 E Jn. Now if we assume 
that, for some k such that 1 k < n - 1, G(n) E X, then again using (4.9), we 
obtain 

-(n) =s(nk)j) E Sk(VK) c V4l =k Sk(Gk+) k S(J) 

which proves (4.10). Assertion (4.11) follows from (4.10). This completes the proof. 
THEOREM 4.3. Let 

(4.12) n 
= a, a2 an 

be given and let VI, ..., K be subsets of the extended complex plane such that 

(4.13) 0 E Vn 

and 

(4.14) Sk(Vk) = ak/(bk + Jk) C J1;, k = 2, ... , n. 

Further, let 

(4.15) An = inf Iak 1, 

(4.16) 6(n) = max d(-bk, k), 

and 

(4.17) Mfn) = max{IwI: w e Vk/(bk + Vk),k = 1,2, ... *n}. 

If gk() is defined by (3.4) and (1.3), then 

(4.18) g(n)l < A(n)/(60())2, k = 1, 2, ..., n (Method A) 

and 

(4.19) (n)l < M(n) k = 1, 2, ..., n (Method B). 

Proof. By (3.4) and (1.3), we have 

k_ _ _ _ _1a + 

bk + G l(l (bk + G 1l)(bk+1 + Gkn)2) 
, k= 1,...,n-1 

Hence, from (4.15), (4.16) and Lemma 4.2, we obtain (4.18). Inequality (4.19) 
follows immediately from (3.4), (4.10) and (4.17). 

Some examples of applications of Methods A and B will be given in the 
following section. It will be seen that for certain situations Method A is preferable 
to Method B and vice versa. 



STABILITY IN EVALUATING CONTINUED FRACTIONS 805 

5. Applications. To illustrate the use of Theorem 4.3, we now obtain explicit 
bounds for gk(n) for two important classes of continued fractions: (a) Stieltjes 
fractions and (b) a class associated with parabolic convergence regions. 

5.1. Stielt/es Fractions. A Stieltjes fraction is a continued fraction of the form 

(5.1) a, z a2 Z a3 Z> ) 1 + 1 + 1 + (a->0), 

or one that can be put into the form (5.1) by an equivalence transformation. It is 
well known [9] that if (5.1) converges at a single point z (z =# 0), then it converges 
at every point z in the cut plane jarg zi < sr. Its limit A(z) can then be represented 
by a Stieltjes integral 

(5.2) f(z) = Z 2+l(t) 

where I(t) is a bounded, nondecreasing real-valued function with infinitely many 
points of increase on [0, xe). Some examples of functions known to possess Stieltjes 
fraction representations include: exponential integrals, incomplete gamma func- 
tions, the logarithm of the gamma function, the error function, ratios of successive 
Bessel functions of the first kind and various elementary transcendental functions. 
The reader is referred to standard references [1], [2], [10] for explicit formulas and 
other examples. Our purpose here is to obtain bounds for Ign)l in terms of the 
complex variable z and coefficients ak of the Stieltjes fraction (5.1). The main results 
are summarized in the following: 

THEOREM 5.1. Let 

(5.3) fn = 
az a2Z anz 

1+1 + + 1 

where 

(5.4) 0 < ak ? A, k= 1, ... n, 

(5.5) z = reio , r > 0, 101 < 77. 

Further, let 

(5.6) =r (n ak Z an Z (5.6) G k + + + 1I k = 1, ... , n (Gn+ =0 ), 

and 

(5.7) g1kfl) = G,(n/(l + G n), k = 1, ..., n. 

(i) If I 01 _- 7rl 2, then, for k = II ... ., n, 

(5.8) Ig?n) I Ar/(1 + 2Ar cos 9 + A2r2)l/2 < 1. 

(ii) If r/2 < 101 < 7r, then, for k = 1, ..., 

(5.9a) jgk) 
' 1 + 2A cos i + A2r2 provided Ar < cos( -9), 
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jg~n1I 
Ar oiecs 

(5.9b) (I + 2Ar cos 9 + A2r2)1/2 provided cos -9) 

_ Ar _ sec (r - 9), 

(5.9c) |gk I Ar CSC2 9, provided cos ( -9) ? A r. 

Remarks. If 7T/2 < 191 < 7r and Ar < o sec(,r - 9), then IwoI < I (see (5.15)). 
For 

max cos(',r - 9), sec(g - 9)) _ Ar _ sec(,r - 9) 

it is still true that jg,")j Iwo |1, but then IwoI _ 1. 
Our proof of Theorem 5.1 is based on Theorem 4.3 and the following two 

lemmas: 
LEMMA 5.2. Let fn and Gkn) be defined as in Theorem 5.1. Then 

(5.10) akz/(l + V) C V, k = 1, ..., n, 

where V = V(A, r, 9) is the convex lens-shaped region (Fig. 1) (with interior angle) 191, 
bounded by the ray issuing from the origin in the direction 9, and the circular arc starting 
at the origin, tangent to the real axis, and extending to the point A reiG. Further, 

(5.11) &Gk E V, k = 1, ..., n. 

Proof. The region 1 + V has the two points 1 and 1 + Arei9 as vertices. Hence 
the lens-shaped region 1/(1 + V) has the vertices 1 and 1/(1 + AreiG); it is 
contained in the lens-shaped region X which is bounded by the real axis and the 
circular arc passing through 0 at an angle -9 with respect to the real axis and 
passing through 1. The point 1/(1 + Arei') is located on this circular arc. Clearly 
amzX C Vfor m= 1, 2, , n, since z = eio and 0 < am _ A. 

y 

Are-I I+AreI 

I ~ ~ ~~ I+1 1 

x 

I + Are '8 

FIGURE 1. Schematic Diagram of Regions V, I + V, 1/(1 + V) and X 
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Since 0 E V, the second assertion of the lemma follows from the first by Lemma 
4.2. This completes the proof. 

LEMMA 5.3. Let f, ak, Z, Gk(n and g (n) be defined as in Theorem 5.1. Then 

(5.12) W= V/(l + V) 

is the convex lens-shaped region (Fig. 2) wOith the same interior angle 91 as V. with 
vertices at 0 and at 

(5.13) W0 = Are0I(I + Are"6), 

and with one of its bounding circular arcs tangent to the real ax-is at 0. Further, 

(5.14) g(n) E W, k = 1. n. 

Proof. Since V is a convex lens-shaped region, so is I + V. Also 1/(1 + V) is a 
lens-shaped region with the same angular opening as V. That it is also convex 
follows from the fact that I + V passes through I and that its bounding circular arc 
is tangent to the real axis at 1. Thus, 

W = V/(l + v) = I - 1/(1 + [) 

is also a convex lens-shaped region with the same interior angle as V. A simple 
calculation shows that 0 and wv0 are the vertices of W. Finally, (5.14) follows from 
(5.1 1) and (5.12). This completes the proof. 

Proof of Theorem 5.1. Assertion (i) follows from the geometry of the region W 
described in Lemma 5.3 (Fig. 2), the fact that 

(5.15) soI = Ar <I + 2Ar cos 9 + A2r2, 

and Method B of Theorem 4.3. 

y 

I+ A r e i 0| = - 
= 

I_- 

I /~~~+ I+V 

I +Areie 

FIGURE 2. Schematic Diagram of Regions 1/(1 + V), -1/(1 + V") and X 
- V/(l + V) 
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The proof of (5.9b) is also based on (4.15), Method B of Theorem 4.3 and the 
following argument: When the convex lens-shaped region W has an interior angle 
greater than q/2, then it is possible that the distance Iwo I between the vertices of W 
is smaller than the diameter of W. This will indeed be the case exactly when one of 
the angles which the straight line, passing through 0 and wo, makes with one of the 
bounding arcs of W exceeds 7r/2. A simple geometric argument shows that one of 
the angles discussed above will exceed q/2 if and only if either Ar > sec(7r - 9) or 
Ar < cos(r - 0). 

The proofs of (5.9a) and (5.9c) follow from Method A of Theorem 4.3 and the 
following simple properties of the region V of Lemma 5.2 (see Fig. 1): If 
7r/2 < 11 <K S, then 

d(-1, V) { Ar csc2 , provided COS(7 - 9) ' Ar, 
d(-1, V) - 1 + Arei"', provided Ar < COS(7 -9). 

This completes the proof of Theorem 5.1. 
As a simple illustration of the use of Theorems 5.1 and 3.1, we consider the 

representation of the complementary error function [1]: 

2 00 wew /1\ 
(5.16) erfc w = -- J e-'2dt = We F 2 ) Re(w) > 0, 

where F(1/w2) has the Stieltjes fraction representation 

(5.1 7) F~z) = Z. (1/l2)z (2/2)z (3/2)z (4/2)z 
1 + 1 + 1 + 1I .. 

valid for all z such that I arg z I <K . Thus, F(z) = K(a z/l), where, for n > 2, 

(5.18) O<ak<(n-1)/2=A, k= 1,...,n. 

Hence, for I arg z I ? 7/2 or, equivalently, for larg wl ' 7r/4, (5.8) implies that 
-g1f)l _ 1, for all k = 1, ..., n and n = 1, 2, . It follows from (3.11) that the 

relative rounding error IE(n) in calculating the nth approximant of (5.17) is bounded 
by 3nc, where X = (')1O'-, v equal to the number of significant decimal digits 
carried in the (machine) computation. 

5.2 Parabolic Convergence Regions. As a second illustration, we consider the class 
of continued fractions to which the following general parabola theorem applies. 

THEOREM 5.4 [6]. Let the elements of a continued fraction K(an/1) lie within 
parabolic regions defined by 

(5.19) Ian - Re[anexp(-i(T, + In-' ))] - 2pn-I (COS In -Pn) n _ 1, 

where Pn > 0, In is real and 

(5.20) P - < M < 2, Jn = Pnexp(i n). 

Then the sequences of even and odd approximants both converge. The continued frac- 
tion K(an/1) converges if and only if at least one of the series 
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(5.21) la a a |'__la a_ a3 a5 . . .a2n+ 1 a4 a6 ... a2n+2 

diverges. If there exists a constant K > 0 such that Ian I _ K, n ' 1, then at least one 
of the series diverges so that the continued fraction converges. 

Remarks. (1) The region defined by (5.19) is bounded by a parabola with focus 
at the origin, vertex at the point Pn-I (cos Jn - Pn) exp [i(*n + In-I + 7)] and axis 
along the ray arg an = An + An-+. Condition (5.20) implies that 

0 < Pn cos An and -7T/2 < An < 7/2. 

Thus, it can be seen that the class of continued fractions covered by Theorem 5.4 

subsumes all convergent Stieltjes fractions. 

(2) It is shown in [6] that the class of continued fractions covered by Theorem 

5.4 also subsumes a large subclass of positive definite continued fractions. 

It is further shown in [6] that the elements an lying in the parabolic regions (5.19) 

satisfy 

(5.22) Sn (J) = an/(1 + J?) C Jn-1, n ' 1, 

where the Kn are half-planes given by 

(5.23) V = {(: Re[t exp(-i'n)] -Pn4, n ' 0. 

A simple calculation shows that 

(5.24) d(- 1, Vn) = COS *n - n 2' 2M > ?, n '1 

where the Kn are given by (5.23) and Pn, An are subject to (5.20). Thus, for a 
continued fraction K(an/1l) with elements an lying in parabolic regions defined by 
(5.19) and (5.20), we obtain from Method A of Theorem 4.3, (4.15) and (5.24) the 
bound 

(5.25) Ig~)l <?A(n)/(2-A2 )2, k = 1, 2,..., n,n > 1. 

For the important special case in which An = Ah 1J1 < 7 /2, Pn = COS J, (5.24) 
and (5.25) yield the sharper result 

(5.26) [g~l)l _ A(n)/(2 cos '22 k = 1, 2, .. ., n, n > 1 

If, t = 0, the region (5.19) is bounded by the parabola with vertex at -4, focus at 
o and axis on the real axis. Thus, the continued fraction K(-.25/1) considered in 

the numerical illustration in Section 2 is subsumed under the present class and one 

obtains from (5.26) the bounds Ig(n) _ 1. Therefore, (3.11) gives a bound of 3nW 
for the relative rounding error in evaluating the nth approximant, where X 

2 () 10'-, v equal to the number of significant decimal digits carried in machine 

computation. 

Application of Method B of Theorem 4.3 gives the bounds 

(5.27) |gk n) = M(Wk) = max{JwJ: w E Wk = Vl/(1 + Jk)}, 
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where JK is defined by (5.23). To evaluate the right side of (5.27), one can easily 
verify the following: 

1 + V = t{: Re[(g - l)exp(-iIk)] ? 

I + Vk t 2(cos *k - Pk) 2(cos *k - Pk)} 

and hence 

_ _1 

(5.28) 
1 + 

( 
I + k 

+ eXP(-i'Jk) I 

( )2(cos "*k 
- Pk) | 2(cos 'k - Pk)) 

Thus, from (5.27) and (5.28), it follows that 

~g1kf)' exp (-i'J'k) ? 1 

(5.29) 
' 1 2(cos 

"k -1pk) 
2(cos *k 

-1Pk) 

1 - - 4pk cos'Ik?+4pk 

2(cos k - Pk) 

It can be shown from (5.29) that M(Wk) 1 if and only if 1k = 0 and 0 P 3k 2- 
The continued fraction K(-.25/1) is covered by Theorem 5.4 with "k = 0 and 
Pk = 2. Hence, we obtain the bound gk(n) ? 1, which is the same that was given by 
Method A above. 
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